

USGS Surface-water Trends Team

USGS NAWQA project of the NAWQ program

USGS Surface-water Trends Team

USGS NAWQA project of the NAWQ program

Ecology sampling began in 1993

USGS Surface-water Trends Team

USGS NAWQA project of the NAWQ program

Ecology sampling began in 1993

 Largest spatially distributed time-series bioassessment dataset in the U.S.

USGS Surface-water Trends Team

USGS NAWQA project of the NAWQ program

Ecology sampling began in 1993

 Largest spatially distributed time-series bioassessment dataset in the U.S.

Assess changes in diatom, fish, and invertebrate communities

Trend assessment

Trend assessment

- Reduce signal-to-noise ratio in the time series
- Enhance trend detection

Background Information In water-quality trend monitoring

Background Information In water-quality trend monitoring

Time, discharge, and season

In water-quality trend monitoring

- Time, discharge, and season
- Reduce signal-to-noise

In water-quality trend monitoring

- Time, discharge, and season
- Reduce signal-to-noise
- Enhance the detection of changes in concentration over time

In water-quality trend monitoring

- Time, discharge, and season
- Reduce signal-to-noise
- Enhance the detection of changes in concentration over time
- WRTDS, SEAWAVE, and SEWAVE-Q models

Detecting Trends

Goal: reduce signal-to-noise

Detecting Trends

Goal: reduce signal-to-noise

 Accounting for climate induced variability in endpoints (antecedent flow, temperature)

Detecting Trends

Goal: reduce signal-to-noise

 Accounting for climate induced variability in endpoints (antecedent flow, temperature)

 To isolate trends influenced by nonclimatic factors

Accounting for Endpoint Variability

Climate variables

- Streamflow
 - Average daily and coefficient of variation
 - Flows 15, 60, & 240 days <u>Antecedent</u> to each sample date

Accounting for Endpoint Variability cont.

Climate variables

- Streamflow
 - Average daily and coefficient of variation
 - Flows 15, 60, & 240 days <u>Antecedent</u> to each sample date
- Air temperature
 - PRISM data
 - Average monthly temperature
 - sample month and 2 months prior

Accounting for Endpoint Variability cont.

Biological Endpoints

 Measures of composition, similarity, diversity, tolerance, assessment indicators

Bray-Curtis Similarity 0.75

0.50

0.25

0.00

2003 2004 2002 2000 2001 2008 2003 2010 2017

Year

science for a changing world

Photo (Smoky Hill River at Elkander, KS)

1.00 -Invertebrate example Clinton River at Sterling Heights, MI

0.75 -

 Measures how similar each sample is to the starting year

0.25

0.50

Bray-Curtis Similarit

0.00

2003 2004 2002 2006 2001 2008 2008 2010 2017

Year

Photo (Smoky Hill River at Elkander, KS)

1.00 - Invertebrate example Clinton River at Sterling Heights, MI

year over time

- 0.75 -
- Measures how similar each sample is to the starting year
- 0.50
- A trend indicates that community structure becomes consecutively less similar to the first
- 0.25

Bray-Cur

0.23

0.00

Year

science for a changing world

science for a changing world

Photo (Smoky Hill River at Elkander, KS)

Taxonomic Completeness O/E - Fish

• Trend period 2002 - 2012

• Highlighted trends have a 90% likelihood of occurring

Adjusted Taxonomic Completeness O/E - Fish

• Trend period 2002 - 2012

- Highlighted trends have a 90% likelihood of occurring
- Larger points indicate change after adjustment

decreased

low likelihood of change

Invertebrate Taxa Richness

• Trend period 2002 - 2012

• Highlighted trends have a 90% likelihood of occurring

Adjusted Invertebrate Taxa Richness

• Trend period 2002 - 2012

- Highlighted trends have a 90% likelihood of occurring
- Larger points indicate change after adjustment

Effect of Climatic Variables

Effect of Climatic Variables

At the End of the Day

 Accounting for antecedent conditions makes a difference

At the End of the Day

 Accounting for antecedent conditions makes a difference

Associations vary by site and assemblage

Implications for interpreting bioassessment data

Acknowledgments

 Daren Carlisle, James Falcone, Hank Johnson, Mike Meador, Jenny Murphy, Gretchen Oelsner, Karen Ryberg, Ted Stets, Melissa Riskin, Sarah Spaulding, Lori Sprague, Skip Vecchia

